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ABSTRACT 

We give an efficient algorithm which determines whether a condition due to 
Hoffman (1963) is satisfied by the cost matrix of a transportation problem. In case the 
condition is satisfied, our algorithm generates a permutation of the matrix entries 
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(called a Monge sequence), which allows for the solution of any problem with that 
cost matrix in linear time, by way of a “greedy” algorithm. This is the first polynomial 
algorithm for this problem. The running time of our algorithm is better than that of 
the best known algorithms for the transportation problem, and thus it can be used as a 
preliminary step in solving such problems without an increase in the overall complex- 
ity. 

1. INTRODUCTION 

Hoffman [lo] proved a necessary and sufficient condition for a trans- 
portation problem to be solvable by a greedy algorithm. The greedy algo- 
rithm is given a permutation (called a Monge sequence) of the decision 
variables for the problem and maximizes each variable in turn. It is much 
faster than standard algorithms for the transportation problem. The applica- 
bility of Hoffman’s condition has since been established for various families of 
problems [2, 9, 10, 151 in order to exploit the faster algorithm. Hoffman’s 
condition, though, is not constructive, since it requires prior knowledge (or 
guessing) of the Monge sequence. Until now, no polynomial algorithm has 
been known for checking whether a transportation problem satisfies 
Hoffman’s condition, and for constructing a Monge sequence for it in case it 
does 112). Previously, these questions had to be answered separately for every 
family of transportation matrices. 

In this note we give an algorithm which tests whether a Monge sequence 
exists for a given transportation cost matrix, and constructs such a sequence if 
one exists. A straightforward implementation of the algorithm requires 
0( m2n2) time and 0( mn) space for an m X n transportation matrix. A more 
sophisticated implementation reduces the running time to 0( msn log n) at 
the cost of increasing the space requirement to O(m%), where 711 can be 
chosen as the smaller dimension of the matrix. The running time of our 
algorithm is better than that of the best known strongly polynomial algorithm 
for the transportation problem by a factor of at least n/m > 1, and thus it 
can be used as a preliminary step towards solving such problems without an 
increase in the overall complexity. We also make some observations as to 
when such a sequence exists, and discuss the applicability of the algorithm to 
practical situations. 

2. PRELIMINARIES AND BACKGROUND 

Given that some commodity must be shipped from m different “source” 
locations to satisfy the demand at n “destination” locations, the transporta- 
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tion problem is defined as the task of finding the appropriate amounts to 
send from each source i directly to each destination j, in a way that 
minimizes the total shipping cost. Formulated as a linear program, the 
transportation problem is to find values for xii, i = 1,. . . , m, j = 1,. . . , n, 
where 

i Xij=ai, igIxij=bj> 
j-1 

xii 2 0, i = l,...,m, j=l,,..,n, 

such that C;, 1Cy_ lcij~ij is minimized. Here, a i is the amount of the 
commodity available at source i, and bj is the amount required at destination 
j, where Cy_ lai = Eys,bj is assumed. C is a matrix with m rows and n 
columns, whose (i, j)th element, cii, is the cost per unit of shipping from 
source i to destination j. 

This problem was first described by Hitchcock [8] and Kantorovich [13] 
and has been the subject of intensive study (see, e.g. [4, 14, 191). Since it can 
be represented as a minimum cost flow problem, there exist many efficient 
solution techniques for the problem. Most of the algorithms solving it are 
based either on simplex method operations or on flow augmentations in the 
corresponding digraph. The currently fastest strongly polynomial algorithm 
for the transportation problem is due to Orlin [ 181 and requires O( n log n) 
solutions of shortest path problems on graphs with n + m vertices and nm 
edges. The fastest (weakly) polynomial algorithm for the problem is due to 
Ahuja, Orlin, Stein, and Tajan [l] and has running time 0( n2m log nC), 
where C is the largest cost in the matrix, [17]. 

It is well known that the special structure of the problem makes it 
possible to obtain an initial (basic) feasible solution by taking the indices of 
the variables in any order, say ((i,, j,), (i,, j,), . . . , (i,,, j,,)), and perform- 
ing the following linear time algorithm: 

Let di=ai, i=l,..., m, hj=bj, j=l,..., n. 
For k = 1,. . . , mn do: 

Set X& +- min(cii,, Ljk) 

$ik + $ik - “ikjk 

b,+- bjli- x. ‘,I* 
end 

(i.e., each variable, in its turn, takes on the largest feasible value possible). 
Examples of this “greedy” technique include the “northwest corner” method 
and the “minimum cij” rule (see, e.g., [7]). While a sophisticated variable 
ordering rule may be useful in determining a “good” solution, it cannot, in 
general, guarantee an optimal solution. 
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In [lo], the author provides necessary and sufficient conditions for an 
ordering of the variables which guarantees that the greedy technique pro- 
vides an optimal solution to the transportation problem, for any values 
of (a,,..., a,,) and (b,, . . . , b,). Namely, the permutation S = 

((ii, j,),(i,, j,),...>(L”, j,,)) of the indices of the cost matrix must satisfy 

For every 16 i,r< m, 16 j,s< n, whenever (i, j) 
precedes both (i, s) and (r, j), the corresponding entries 
in matrix C are such that clj + cry < c,,, + crj. 

An ordering satisfying condition (Cl) is called a Mange sequence for the 
matrix C, named after the mathematician who made similar observations 
about greedy solution techniques as long ago as 1781 [16]. (We have deviated 
slightly from Hoffman’s terminology for the sake of brevity.) 

Given a transportation problem with cost matrix C, we would like to find 
a Monge sequence for it, if one exists. By Hoffman’s theorem, obtaining such 
a sequence reduces the time complexity of any subsequent solution of the 
problem to linear. Therefore, the sequence would be useful in many practical 
applications of the transportation problem. It is particularly attractive in 
cases where the cost matrix is fixed but the supply and demand vectors vary 
over time (e.g. planning a daily transportation program where the demands 
and supplies change daily, but the per-unit shipping costs remain fixed for a 
long period). In these situations, identification of the sequence greatly 
accelerates and simplifies repeated solutions. 

In this paper we study the problem of constructing a Monge sequence for 
a transportation matrix or showing that none exists. We describe two polyno- 
mial algorithms for that problem. While this general problem has not been 
solved before [12], certain special cases involving assignment problems have 
been studied, in connection with polynomially solvable special cases of the 
traveling salesperson problem. In that context, Gilmore and Gomory (51 
addressed n x n assignment matrices D (cf. [4]), satisfying (among other 
conditions) 

dij + d,, < di, + dri for every i<r and j<s. 

Chandrasekaran [3] observed that such matrices can be recognized in 
polynomial time even if the rows and the columns of the matrix have been 
permuted, and the two n-element permutations can be polynomially recon- 
structed. Gilmore et al. [S] made a similar observation earlier, for the case 
where only the columns have been permuted. (In their case there are 
additional conditions of monotonicity along each row, which further simplify 
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the problem.) The solution techniques developed for constructing the n-ele- 
ment permutations in the assignment problem are, however, tailored for that 
special case. They are not suitable for our more general problem, in which 
one wishes to construct an nm-long permutation for a transportation problem. 

3. OBSERVATIONS 

A natural question that arises is whether every matrix C gives rise to a 
Monge sequence. Clearly, such a sequence exists for every matrix of dimen- 
sion 1 X n. It turns out that every 2 X n matrix also has such a Monge 
sequence, but not every larger matrix does: 

OBSERVATION 3.1. There is a Monge sequence for every 2 X n cost 
matrix. 

Proof. Renumber the columns of the matrix so that cii - c2i < cl2 - cz2 
< ... <Gin - CZn. The ordering ((1,1),(1,2) ,..., (l,n),(2,1) ,..., (2,n)) is a 
Monge sequence for C, because cri + czi < cij + cpi for all i < j, implying 
that condition (Cl) holds for every item. n 

NOTE. A somewhat surprising fact is that in the 2 X n case, the reversed 
sequence ((2, n),(2, n - l), . . . (1,l)) is also a Monge sequence. This, of course, 
does not hold in general. 

OBSERVATION 3.2. For every m, n such that min(m, n) > 3, there exist 
m x n cost matrices which do not have a corresponding Monge sequence. 

Proof. Consider the 3 X3 identity matrix. A simple check shows that 
none of the nine elements in the matrix can appear before the remaining 
eight in a Monge sequence, without violating condition (Cl). Consequently, 
for min(m, n) > 3, no m x n matrix containing a 3 x 3 identity matrix as a 
submatrix has a Monge sequence. n 

4. A SIMPLE ALGORITHM 

In this section we describe a new simple polynomial algorithm for the 
detection and construction of a Monge sequence in a transportation matrix. 
First, we need some notation: When i z r and j f s in condition (Cl), the 
four entries (i, j), (i, s). (r, j), (r, s) determine a 2 ~2 matrix which we call a 
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quadruple. This matrix has two diagonals, each containing two entries, 
namely ((k j), ( r, s)) and ((i, s), (r, j)). If cij + c_ < cis + crj, then 
((i, j), (7, s)) is called a s-mull diagonal of that quadruple. Both diagonals will 
be called small if equality holds. 

THE ALGORITHM. 

lnitialiurtion: 

1. Build a graph whose nodes correspond to the matrix entries. Two nodes 
are connected by an edge if they are on the strictly larger diagonal in the 
quadruple which they share. (Nodes which correspond to entries in the 
same row or column are not connected by an edge.) 

The iterative step: 

2. If there is a node (i, j) of degree zero (an isolated node) in the graph, 
place it next in the sequence, and eliminate from the graph all the edges 
which connect an element from row i with an element from column j. 
[In every quadruple which includes (i, j), the Monge condition is already 
satisfied; hence these edges are unnecessary.] 

3. If there is no isolated node, stop. No Monge sequence exists. 

Successful termination occurs when all the nodes have been sequenced in the 
iterative step. 

PROPOSITION 4.1. The algorithm generates a Mange sequence if and only 
if one exists. 

Proof. The algorithm generates a sequence (R,, . . , R,) where every Ri 
is a distinct pair of matrix indices. The sequence preserves the following 
invariant conditions: 

For every j = 1,. . . , 1, in every quadruple which includes 
Rj but does not include R,,..., Rj_l, Ri is on the small 
diagonal. 

(C2) 

But this is equivalent to the Monge condition (Cl). Hence if a full sequence 

(R i,. . . , R,,) has been generated, then it is a Monge sequence. 
We now want to prove that the failure of the algorithm implies the 

nonexistence of a Monge sequence. Assume to the contrary that a Monge 
sequence (S,, . . . , S,,) exists, but the algorithm stopped after the construction 
of the subsequence R = (R 1,. . . , Rk). Let t be the smallest index such that 
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s, E (RI,..., R, }. Since both S and R satisfy (CB), S, can be appended to R 
while maintaining (C2). This is a contradiction to the maximality of R. w 

NOTE. We have actually proved a somewhat stronger result. Define a 
Monge subsequence as any sequence (R 1,. . . , R,) (possibly with 1 < mn ) 

satisfying (C2). We have proved that the algorithm generates a maximum 
length Monge subsequence. We shall return to this point later. 

PROPOSITION 4.2. The algorithm can be implemented in quadratic time 
and linear space. 

Proof The initialization phase requires scanning all quadruples, i.e. 
0((mn)2) steps. The elimination of edges after an iteration which placed 
(i, j) in the sequence requires scanning all quadruples containing an element 
from row i and column j, and hence can be done in O(mn) steps per 
iteration. The identification of an isolated node can also be done in 0( mn ) 
steps per iteration: Maintain a degree variable for each node which is 
originally zero, and is updated whenever the degree increases (in the initial- 
ization phase) or decreases (in the iterative phase). The additional work is 
constant for each edge update. Finding a zero degree node can thus be done 
by scanning the degree variables of all nodes which requires linear time. (This 
part can indeed be done in constant time per node, by maintaining a queue 
of the nodes of degree zero, but the improvement will not change the overall 
complexity.) Since the total work per iteration is O(mn) steps and the 
number of iterations is O(mn), we get the quadratic time bound. 

In a straightforward implementation of the algorithm one would keep the 
whole graph (vertices and edges), which requires quadratic space. Instead, 
we can keep only the degree variables for each node without keeping the 
edges explicitly, thereby reducing the space requirement to linear. The 
updating of the degrees can be done after (i, j) has been sequenced by 
recomputing for each pair ((i, k,),(k,, j)) whether an edge should have 
connected them before (i, j) was placed and changing their degrees accord- 
ingly. The recomputing requires constant time for each quadruple containing 
(i, j ) and hence linear time per iteration, and does not change the overall 
time complexity. l 

Even if the algorithm terminates with a Monge subsequence only, this 
information may be quite useful in practice: As easily follows from Hoffman’s 
arguments [lo], using the greedy algorithm with such subsequence produces 
values for the corresponding variables which occur in some optimal solution. 
Hence, their values can be fixed, and the resulting lower-dimensional problem 
can be solved by standard techniques. That smaller problem cannot be solved 
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greedily, but its size may have been drastically reduced from the original 
problem size (since every element in the Monge sequence may eliminate up 
to a full row or column from the problem). 

5. A FASTER ALGORITHM 

Henceforth, we assume that the cost matrix C is such that m 6 n. 
For every pair of row indices, i and r, we construct a precedence uectar, 

Pi,, = { p,, . . . , p, }, which represents a permutation of the column indices 
satisfying 

Let c^( i, r) = ciP, - c,~,. 
Notice that Pi7 = (pi, . . . , p,) implies that Pr, = (p,, . , pl), so these 

vectors can be created by sorting ( T] 1’ t is s, each having size n, which can be 

accomplished in 0( m2n log n) time. 
From the proof in Observation 3.1, we see that Pzr gives an ordering of 

the columns which provides a Monge sequence for C, when it is restricted to 
rows i and r. In particular, it gives the order of elements in row i. The 
following observation follows: 

LEMMA 5.1. The element (i, j) can be placed first in II Monge sequence 
for C if and only if column index j can be first in the precedence vectors P,r 
for every r f i. 

[Note: It is possible that, for some T, ?(i, r) = cis - c,,? for more than one 
value of s, so there can be more than one possible first element in Pi,.] 

The following data structures are to be used to make efficient the search 
for an appropriate item to enter the sequence. For each row index i, create a 
(0,l) matrix Bi, having m rows and n columns. These matrices will have the 
property that Bi(r, s) is 1 if and only if, according to the order constraints 
implied by rows i and r, (i, s) can be next in a Monge sequence. The 
matrices Bi are initialized as follows: 

Bi(i, j) = 1 for j=l,...,n, 

B,(r, s) = 1 forr#i,andforallssuchthat cis-c,,=c^(i,r), 

Bi( T,,s) = 0 otherwise. 
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In particular, for each B,, row r initially contains a 1 in the column(s) 
corresponding to each possible first element in Pi,, r # i. (Row i is set for 
convenience.) 

In addition, create a matrix, DEGREE, with m rows and n columns, such 
that DEGREE( i, j ) is the number of l’s in column j of the matrix Bi. 
DEGREE(~,S) will therefore be m if and only if, according to the order 
constraints implied by all rows, (i, s) can be placed next. That is, 

CLAIM 5.2. An element, say (i, j ), can be placed first in a Monge 
sequence for C ifand Only if DEGREE(i, j)= m. SO if DEGREE < m for euey 
element, no Monge sequence exists. 

The initialization of each row r in Bi, r # i, requires finding column 
indices j such that cij - crj = c^( i, r), which can be accomplished in O(n) 
time, so the total complexity of building B,, . . , B, is O(m%). Notice, 
however, that work can be saved if the precedence vectors are referred to. 
The precedence vectors will also be needed for the subsequent iterations 
of the algorithm. Assigning DEGREE and finding a pair (i, j) with value m 
can be done as a by-product of building and later updating the matrices 
Bi, i = 1,. . . , m, by maintaining a queue of the entries (i, j) with 
DEGREE(i,j)= m. 

In the iterative phase of the algorithm, after having placed the pair (i, j) 
in the sequence, we must insure that the set of conditions (Cl) which are 
associated with items (i, s), s # j, and (r, j), r # i, which have yet to be 
placed in the sequence, no longer involve (i, j). This is done as follows: 

For each B,, r f i, if B,(i, j) = 0, set it to 1 and update DEGREE(r, j). 
In each of the precedence vectors Pi,, r + i, remove element j. If this 

results in an update to c^(i, r), i.e., if t, the first element in the revised vector, 
is such that tit - crt is greater than the previous c^(i, r), then for t and each 
other column index s such that ciS - c,~ = &( i, r ), make the following changes: 
If Bi( r, s) = 0, set it to 1 and update oEonEE( i, s). 

LEMMA 5.3. An element, say (i, j), can be placed next in a Monge 
sequence for c if and only if DEGREE(i, j) = m. SO if DEGREE -c m for every 
element, there is no Monge sequence. 

Proof. Notice that, by the construction of Bi, if Bi( r, j) = 1 for some 
r # i, then either (r, j) is already in the sequence, or cij - crj = ?(i, r) $ 
c. - c,, for all s + j which have not been removed from the precedence 
vzctor Pir [i.e., (i, s) which have not yet been placed in the sequence]. So if 
DEGREE(i, j) = m, then for every (r, j) and (i, s) not yet in the sequence, 
r # i, s # j, we have cij - crj < ciS - cTS, which is equivalent to condition 

(Cl)* 
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If, on the other hand, oEcnEE( i, j) < m, there is an r f i such that 
Bi(r, j) = 0 [which indicates that (r, j) is not yet in the sequence]. Since row 
r in Bi is representative of the precedence vector Pi,, we know that j is not a 
possible first element in Pi* [or B,(r, j) would be 11. So there is some other 
column index, s, such that (i, s) and (r, s) have not yet been placed in the 
sequence, and cis - c,, = c^(i, r) < cij - clj indicating that condition (Cl) has 
been violated; item (i, j) cannot be next in the sequence. [Note that (r, s) 
indeed has not yet been placed, since otherwise condition (Cl) would have 
been violated before.] n 

By the time the iterative phase of the algorithm is complete, the following 
operations have been performed. If C is such that a Monge sequence exists, 
every one of the m x n items have been placed, each calling for a set of 
updates to the precedence vectors P,r and the matrices B,. 

When item (i, j ) is added to the sequence, each B,, T # i, has no more 
than one of its entries changed. So no more than 0(m2n) operations are 
required, in total, for such updates. Updating Bi, however, requires consult- 
ing each of Pil, Piz,. . ., Pi,. 

If for P,;, say, the removal of column index j does not result in a change 
to c^( i, i) then no update to row r^ in Bi is necessary. Note that this can be 
checked in O(1) time by maintaining for each i and r the number of indices 
j satisfying cij - c,~ = Z(i, r). If, on the other hand, there is a new value for 
c*(i, i), then for each of the column indices t satisfying, tit - tit = c^(i, f), an 
update to Bi( i, t) is necessary. If there are k such indices, they can be found 
and treated in O(k) time. As in the matrices Bi no 1 is ever changed to 0, the 
total time for operations of this kind is bounded by the total number of 
entries in B,,..., B,, which is 0( m2n). 

Hence, since the initialization phase requires 0( m2n log n ) operations, 
the total running time of the algorithm is 0( m2n log n). We have thus proved 
the following: 

THEOREM 5.4. The above algorithm generates a Monge sequence for an 
m X n transportation cost matrix if and only if one exists. Its running time is 
0( Tii% log 6) and its space requirement is 0(E2E), where E = min( m, n) 
and 5 = max(m, n). 

Note that for every fixed m, our algorithm works in time 0( n log n). It is 
unlikely (in fact, not possible, under the comparison model) that this can be 
improved, as one can easily produce, in time and space O(n), a sorting of the 
n numbers a 1,. . . , an from any Monge sequence for the 2 x n matrix 

a, ... a” 1 -a1 ... -a, ’ 
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6. CONCLUDING REMARKS AND OPEN PROBLEMS 

The above algorithm which detects and constructs Monge sequences can 
be applied for three purposes: 

(1) To help identify new families of greedily solvable transportation 
problems. Various families of transportation problems for which Monge 
sequences exist have been identified so far [2, 9, 10, 151. The main difficulty 
in the identification of new such families of problems has been the discovery 
of the Monge sequences, whereas the verification that these are indeed 
Monge sequences is usually straightforward. Applying the above algorithm 
makes the identification of new families a much easier task. 

(2) To help solve-or partially solve-particular problems where the 
costs are fixed but repeated solutions are required with varying supply and 
demand vectors. This was elaborated on in Section 4. 

(3) As a preliminary step towards solving any transportation problem. 
Since the time complexity of the algorithm is better than that of the most 
efficient solution techniques known to date (see [18]), its benefits come at 
(essentially) no additional cost. 

Once a Monge sequence has been identified by the algorithm, all the 
subsequent computations with different supply and demand vectors can be 
performed faster than by any standard transportation algorithm, using the 
greedy algorithm with that sequence. In fact, the time for a subsequent 
solution with a given pair of supply and demand vectors is optimal, since 
reading the input will already require linear time by any algorithm which 
relates to each instance separately. We suspect that our algorithm may detect 
new, previously unnoticed Monge sequences in practical problems. This is 
because such problems usually have highly structured cost matrices, and such 
structure may allow for a “hidden”Monge sequence. 

A question arises as to whether the generation of the solution, when the 
Monge sequence is already known, can be done in sublinear time, with 
appropriate efficient preparations. Reading the cost matrix requires mn 
steps, but when repeated solutions are required with the same cost matrix 
and only the supply and demand vectors vary, one can argue that the “fresh” 
input size is m + n only. Since there exist optimal solutions which give 
nonzero values to at most m + n variables, it is conceivable that an algorithm 
which does not require the scanning of the whole Monge sequence exists. 
This issue remains at this point an open question. 

Helpful comments from Alan Hoffnan and two anonymous referees are 
gratefully acknowledged. In particular, we thank one of the refmees for 
bringing to OUT attention References [6] and 131. 
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